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Highlights

1) New deep learning model for cashew crop distribution and planting density mapping.

2) Cashew plantation dynamics were tracked by Planet Basemaps and aerial imagery.

3) Cashew plantation area in Benin increased by 80% from 2015 to 2021.

4) 60% of cashew plantation expansion came from either row crops or abandoned land.

5) Half of Benin’s cashew plantations in 2021 were low density.

6) 38,900 ha of cashew plantations within protected areas in 2021, a 70% rise from 2015.
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Abstract

Cashews are grown by over 3 million smallholder farmers in more than 40 countries

worldwide as a principal source of income. Expanding the area of cashew plantations and

increasing productivity are critical to improving the livelihood of many smallholder communities.

As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew

growers contributing 15% of the country’s national export earnings. Expansion of the cashew

industry is thus an essential economic driver and a governmental priority in Benin. However, a

lack of information on where and how cashew trees grow across the country hinders

decision-making that could support increased cashew production and poverty alleviation. By

leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, two newly developed deep learning

algorithms, and large-scale ground truth datasets, we successfully produced the first-of-its-kind

national map of cashew in Benin, and have characterized the expansion of cashew plantations

between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with

Attention (STCA) model to map the distribution of cashew plantations, which can fully capture

texture information from discriminative time steps during a growing season. We further

developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to

distinguish high-density versus low-density cashew plantations by automatic feature extraction

and optimized clustering. Results show that the STCA model has an overall accuracy over 85%

based on more than 1,100 ground truth point samples from each year and demonstrated a

producer’s accuracy of 87% based on ~4,000 field-collected cashew plantation boundaries. The

CASTC model achieved an overall accuracy of 77.9% based on 348 ground truth samples of

planting density. We found that the cashew area in Benin has expanded by 80% from 2015 to

2021 with 60% of new plantation development coming from cropland or fallow land, while

encroachment of cashew plantations into protected areas has increased by 70%. Only about half
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of cashew plantations were high-density in 2021, suggesting high potential for intensification.

Our study illustrates the power of combining high-resolution remote sensing imagery and

state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous

smallholder landscape, which can help efficiently allocate limited training and nursery resources

for sustainable agricultural development.

Keywords: tree crop mapping; deep learning; cashew plantation; planting density; Planet

Basemaps; aerial imagery
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1 Introduction

Achieving zero hunger and ending poverty by 2030 are two primary and vital missions of the

United Nations (UN) Sustainable Development Goals (UN, 2015). Poverty is a leading cause of

hunger, which continues to affect many people in food-insecure regions of South Asia and

Sub-Saharan Africa (Lowder et al., 2016; Samberg et al., 2016). Most research and applications

in the field of food security focus on increasing staple crop production in the developing world,

e.g., through crop yield forecasts (Basso et al., 2019) and early warning of famine situations

(Becker-Reshef et al., 2020). However, these scientific explorations cannot resolve the underlying

problem of poverty for countries in the Global South. For smallholder farmers, growing tree

crops can provide a stable source of income because of their relatively high cash value,

predictable yields, long tree lifespans of 20-30 years, and good adaptability to growth conditions

(Lin et al., 2021). With tens of millions of smallholder farmers in tree crop production (cashew,

cocoa, coffee, etc), tree crops contribute a large percentage of income in poor communities

globally (Waarts et al., 2021). Increasing the production of tree crops is therefore an important

and effective way to improve the living conditions of smallholders.

Cashew tree crops are widely farmed in 46 countries across Africa, Asia, Latin America, and

the Caribbean, 18 of which are among the least developed countries. Africa accounts for more

than half of global raw cashew nut production followed by Asia, and ~80% of Africa’s raw

cashew nut production is concentrated in West Africa, principally in Côte d'Ivoire, Nigeria,

Benin, and Guinea-Bissau. However, less than 10% of the world's raw cashew nuts are processed

in Africa, and the majority (more than 85%) are processed in Asia, primarily in Vietnam and

India (UNCTAD, 2021). In addition to cashew nuts, the by-products of the cashew crop have a

variety of industrial uses that can assist smallholders diversify their sources of income. Cashew
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nut shell liquid has the potential to be used as a biofuel (Sanjeeva et al., 2014), and cashew apples

can be used to produce a range of beverages and animal feed (Gomes et al., 2018). Since cashew

tree crops are typically cultivated by smallholder farmers, value additions in the cashew industry

and poverty reduction are tightly connected.

Benin is among the top ten cashew growers in the world and the third largest cashew nut

producer in West Africa (Duguma et al., 2021). Cashew nuts from Benin are renowned for their

superior quality and bright white hue. The government of Benin recognizes the importance of

cashew tree plantations in the fight against poverty for smallholder farmers, as evidenced by their

strategy to double cashew production from 2016 to 2021 in the government action plan - Benin

Revealed: Government Action Program (MAEP-Benin, 2017) - and the subsequent 2022-2026

plan (PNIASAN-Benin, 2022). There are two main ways to increase cashew nut production. The

first strategy is to expand the cashew plantation area under cultivation by converting other land

use types. The second is to improve the use of good agricultural practices (GAP) on existing

cashew plantations to increase yield. The two strategies require an understanding of cashew

plantation distribution, i.e., detailed knowledge regarding the location of cashew growing areas

around the country and GAP implementation including planting density (tree spacing).

Knowledge of the spatial distribution of cashew plantations and planting density is therefore

essential to inform government policies regarding land use conversion and to efficiently manage

field extension services. Periodic mapping can help the government understand how policies have

been implemented and update land-use guidelines. In addition, for GAP related to planting

density, identifying regions where cashews have been planted with below optimal GAP planting

density guidelines can help best direct needed resources, including the provisioning of new

cashew nurseries that are a core part of Benin’s national cashew strategy and are crucial to
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increasing cashew production. In Benin and many other countries in sub-Saharan Africa, the

traditional method of gathering information about cashew plantation distribution and GAP related

to tree density is through extensive field data collection by conducting in-person farm visits and

field surveys, which are inefficient and laborious on a large scale. Efficient and low-cost

measures are urgently needed to assist the implementation of development programs on a

national scale (Burke and Lobell, 2017; Chivasa et al., 2017).

Remote sensing offers a cost-effective and time-saving way to characterize ground objects

and track surface changes over time at a large scale. Agricultural remote sensing has made

significant contributions to fighting food insecurity through mapping crop types, predicting

yields, and monitoring crop diseases/insect pests and more (Atzberger 2013; Maes and Steppe

2019; Nellis et al., 2009; Sishodia et al., 2020). However, research involving remote sensing and

tree crops is mostly concerned with mapping tree crops and the effects of deforestation, with an

emphasis on oil palm (Cheng et al., 2016; Gutiérrez-Vélez and DeFries, 2013; Xu et al., 2022)

and rubber (Dong et al., 2013; Tridawati et al., 2020) trees. Rubber and oil palm trees have

relatively prominent spatial and spectral features, which reduces the need for high spatial

resolution imagery. For example, the crown diameter of a mature oil palm tree can be ~10 m and

they are often grown in commercial farmlands spanning a few kilometers (Lin et al., 2021). In

contrast, certain essential global commodity tree crops, such as cashew trees, have smaller

crowns and are planted in irregular patterns within small plots (< 5 ha). In general, cashew

plantations have received little attention in the past, with the exception of some local-scale

studies in a specific community or national park with medium resolution (10-30 m) remote

sensing imagery and traditional machine learning methods (Pereira et al., 2022; Singh et al.,

2018). Those approaches are not transferable to national-scale studies and are insufficient to
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resolve individual fields that are particularly relevant to smallholder management practices.

Furthermore, mapping smallholder tree crops remains challenging given the fragmentary

landscape and limited satellite observation capabilities. Although a few studies have targeted

smallholder plantation systems and complex landscapes (Ballester-Berman and Rastoll-Gimenez

2021; Descals et al., 2019; Dong et al., 2012; Maskell et al., 2021), the observational ability of

medium-resolution spatiotemporal satellite imagery (e.g., MODIS, Landsat, and Sentinel) is

limited for small-crown tree crops. Even fewer studies address different intra-class management

practices, e.g., coffee sub-categories (Hunt et al., 2020; Kawakubo and Pérez Machado, 2016;

Maskell et al., 2021). In recent years, in addition to aerial and drone imagery, as a number of

microsatellite constellations have been launched by private aerospace companies such as Planet,

Airbus, and DigitalGlobe, more data sources are available for high-resolution mapping (< 3 m).

However, only limited small-scale case studies of ~1000 km2 or less have leveraged

high-resolution data to map smallholder tree crops (Burnett et al., 2019; Cui et al., 2022).

To understand smallholder cashew plantations in Benin and fill the gap in large-scale

small-crown tree crop mapping with high-resolution imagery, we employed Planet Basemaps (2.4

m) and aerial imagery (0.5 m) with advanced spatiotemporal deep learning techniques to map

cashew plantation distribution and planting density in Benin. Several aspects of smallholder

cashew plantations made the two classification tasks challenging. First, cashew trees of different

varieties and ages grow in the same plantation with irregular spacing, which results in

tremendous intra-plantation heterogeneity. Second, there is often large inter-plantation

heterogeneity in plantation size, shape, and planting density. In this case, sensors with medium

spatial resolution (e.g., Sentinel and Landsat) and traditional machine learning classification

algorithms are not sufficient for mapping cashew plantations at the field level. Finer remote
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sensing products (such as the 2.4-m Planet Basemaps and 0.5-m aerial imagery used here) and

advanced deep learning techniques have opened up new possibilities for monitoring smallholder

cashew plantations. Third, omnipresent clouds and shadows distort the spectral signal captured

by sensors. The daily revisit frequency of Planet imagery helps ensure the availability of

cloud-free Planet Basemaps on a  monthly basis.

To our knowledge, this is the first-of-its-kind large-scale cashew plantation map leveraging

high-resolution remote sensing imagery. In this study, we (i) developed spatiotemporal tree

classification algorithms for cashew, (ii) mapped cashew plantation spatial distributions for four

years (2015, 2019, 2020, and 2021), (iii) tracked the spatiotemporal changes in cashew

plantations, and (iv) distinguished high- and low-density cashew plantation management

practices. While this study focuses on cashew tree crops in Benin as a special case, the derived

classification algorithm can help inform cashew mapping in other countries or be used for other

similar tree crops.

2 Data and methods

2.1 Study area

The Republic of Benin comprises 12 departments (the primary administrative units) and is

subdivided into 77 communes. The study area located in central Benin (1-3°E, 7-10°N) is one of

the primary cashew-growing regions in West Africa, which spans 12 communes in four

departments - Donga, Borgou, Collines, and Zou. (Fig. 1(a)). Heterogeneous landscapes are

prevalent here (Fig. 1(b)), and cashew trees are typically cultivated in smallholder plantations of

less than 5 ha.
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Fig. 1. (a) Location of the study region and administration map. (b) Examples of Airbus images in 2020 for cashew

plantation, mixed trees/grassland, and cropland/others. The extents enclosed by the yellow boundaries correspond to

the categories noted.

The study region has a tropical savanna climate, and its typical yearly temperature ranges

from 24 to 31 °C. In the study region, the dry season lasts from November to April, while the rest

of the year makes up the rainy season (Table 1). Drought conditions are concentrated between

February and March during the dry season, while the wettest months occur from June to August

during the rainy season. The planting time for cashew tree seedlings is during the rainy season,
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mainly between July and August. The cashew tree blossoms and produces fruit mainly during the

dry season. The peak flowering period for the cashew tree lasts from December through January

and cashew nut harvest takes place from February through March.

Table 1. Average precipitation in millimeters per month from 2015 to 2021 (CHIRPS) and cashew crop calendar in

which dark colors indicate more concentrated events.

2.2 Imagery

2.2.1 Planet Basemaps

Because the study region is located in the tropics, the image quality from optical sensors with

low revisit frequencies is impaired significantly by year-round clouds and shadows. Furthermore,

high spatial resolution is needed for mapping tasks because of the prevalence of irregular

smallholder farms of less than 5 ha in the study region. For these reasons, we employed the

monthly Planet Basemaps product to map cashew trees during less cloudy months (November to

May) each year (2019-2021). Planet Basemaps is a 4-band (blue, green, red, and near infrared)

surface reflectance (SR) product composed of images captured by the PlanetScope microsatellite

constellation (Fig. S1(b)-(c)). The Planetscope consists of hundreds of microsatellites carrying

three generations of sensors (Dove Classic, Dove-R, and SuperDove), and the raw imagery it

captures has a resolution of about 3 m spatially and 1 day temporally (Planet, 2022a). To develop
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the Planet Basemaps, raw imagery has undergone radiometric correction, geometric correction,

orthorectification, and quality imagery selection. To reduce the variance across images and

mitigate the effects of the atmosphere, the Planet Basemaps have also been standardized to a

mature MODIS SR product (Planet, 2022b). The Planet Basemaps are organized in tiles, with 569

tiles required each month to fully cover the study region. Two levels of the Planet Basemaps are

available: Zoom Level 15 (4.77 m) and Zoom Level 16 (2.38 m), and we opted for the latter

given its better observation capability.

2.2.2 Aerial imagery

Aerial imagery was employed for cashew plantation mapping in 2015 due to the fact that

Planet Basemaps are not available prior to 2019. The aerial imagery came from a project

supervised by the Benin government for the preservation and development of gallery forests and

digital base mapping production. A fixed wing aircraft, a Piper PA-31 Navajo, was used for

imagery collection in May 2015. A multispectral camera (UltraCam Eagle Mark 3) with a focal

length of 40 mm was mounted on the airplane platform to collect ground information in four

spectral bands (blue, green, red, near infrared) from 3 kilometers above the ground (Fig.

S1(a)-(b)). Radiometric correction, geometric correction, and orthorectification have been applied

to develop a SR product that is organized in grids. The SR product has a spatial resolution of 0.5

m, and 2031 tiles were required to fully cover the study region.

2.3 Ground survey truth
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Fig. 2. Locations of the training region and validation data in point and polygon forms. Right-hand detailed panels

show Airbus RGB imagery with manually delineated labels for comparison.

2.3.1 Training data

Our chosen region for training the classification algorithms is an area of 1,000 km2 in which

0.5-m aerial imagery from 2015 and Airbus imagery from 2020 are available (Fig. 2), where the

heterogeneous landscapes and irregular smallholder cashew plantations are appropriate for

training and selecting the optimal deep learning model. Ground truth polygons labeled as cashew

plantations, mixed trees/grassland, built-up land, and cropland/others were manually delineated

using 2015 aerial imagery for mapping the cashew plantation distribution in 2015 and using 2020

Airbus imagery for mapping cashew plantation distributions from 2019 to 2021. The training

region in Fig. 2 shows labeled examples from Airbus imagery. The mixed trees/grassland class

includes mixed scattered trees, grassland, and gallery forest, while the cropland/others class
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mainly includes cropland and bare land. Since there is some mismatch when the training labels

based on 0.5-m imagery are directly applied to the 2.4-m Planet Basemaps, a resampling was

applied. Because resampling from the manual ground truth to the Planet-based ground truth

would cause a mixture of boundary pixels between two land cover types, we performed a 2-pixel

erosion for each class, then relabeled eroded pixels as the cropland/others class and removed

connected pixel clusters of less than 30 pixels.

For mapping cashew planting density, we defined high-density and low-density cashew

plantations as having greater than or less than 100 trees/ha, respectively. In production practice,

optimal yield is achieved in high-density plantations with a planting density between 100 and 180

cashew trees/ha. Low-density planting (< 100 trees/ha) cannot fully exploit the productive

potential of cropland, while a density of over 180 trees/ha can lead to declining marginal

productivity due to quality issues caused by disease and infestation. Although here we used a

threshold of 100 trees/ha to distinguish between low-density and high-density cashew plantations,

future studies will use a more in-depth classification that includes “very-high-density”

plantations above 180 trees/ha.

2.3.2 Validation data

Validation data for assessing cashew plantation classification performance consisted of two

kinds of spatial information components – points and polygons. More than 1100 point validation

samples were collected for each of the four years and were obtained from three sources (Table.

S1). Three land cover types (cashew plantation, mixed trees/grassland, and cropland/others) were

labeled for 2015, 2019, and 2020, and four land cover types (high-density cashew plantations,
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low-density cashew plantations, mixed trees/grassland, and cropland/others) were labeled for

2021 because in the latter, we mapped both the distribution and planting density of cashew

plantations. By visually inspecting the 0.5-m aerial imagery obtained from the Benin

government, validation samples were acquired for 2015. Based on high-resolution images from

Google Earth and PlanetScope, we gathered validation samples for 2019 and 2020 respectively.

TechnoServe, a global non-profit organization that works with smallholder farmers in 30

countries across Africa, Latin America, and Asia, and has done extensive work in the cashew

sector, conducted a survey and provided field-collected ground truth samples in 2021 (Fig. 2).

We preplanned the locations of validation points prior to the ground survey based on

transportation accessibility and widespread distribution of the samples. Enumerators then used

GPS devices to locate the predetermined samples and noted the land cover types and tree-spacing

density. Furthermore, as the cashew tree is a perennial plant, we used 196 cashew plantation

ground truth samples with the same exact location across the four years to validate the

consistency of our classification maps in each of the four years. For polygon validation samples,

TechnoServe has accumulated 3996 field-collected samples since 2014 (Fig. 2). These polygon

samples were employed to validate the cashew plantation map in 2021 because the cashew tree is

a perennial plant, and is generally not removed after planting.

2.4 Methodology

2.4.1 Tree crop mapping algorithms for cashew plantations
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Fig. 3. Overview of tree crop mapping algorithms for cashew plantations along with the data and methods employed,

and the generated maps. There are two branches for multi-temporal and mono-temporal imagery, respectively. Each

deep learning module is enclosed by a dotted box. MCD indicates Monte Carlo dropout, and unc(x) is defined by Eq.

(4).
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This study proposes tree crop mapping algorithms for cashew plantations that address both

the spatial distribution and planting density in two stages (Fig. 3). At the distribution mapping

stage, the SpatioTemporal Classification with Attention (STCA) model was developed and U-Net

(Ronneberger et al., 2015) was applied to map cashew plantation distributions for multi-temporal

imagery from 2019 to 2021 and for mono-temporal imagery in 2015, respectively. At the planting

density mapping stage, the Clustering Augmented Self-supervised Temporal Classification

(CASTC) model was developed to map cashew planting density for multi-temporal imagery in

2021.

The training and testing steps using multi-temporal Planet Basemaps were conducted in a

NVIDIA V100 GPU with 32 GB memory. Training and testing using mono-temporal aerial

imagery were conducted in two NVIDIA V100 GPUs with 64 GB memory. For both sets of

imagery, we used the same PyTorch deep learning framework.

2.4.2 Mapping the distribution of cashew plantations

2.4.2.1 Smoothing SR differences between tiles

Each Planet Basemap is a composite image made up of images from different microsatellites

in the PlanetScope constellation, and therefore frequently has issues with inconsistent SR for the

same ground object between tiles, even after the correction based on the monthly MODIS product

(Houborg and McCabe 2018; Rao et al., 2021). In addition, various levels of clouds and shadows

also lead to multiform SR for the same ground object in different regions, despite the superior

image quality of Planet Basemaps relative to the SR products of Sentinel-2 and Landsat imagery
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in the tropics. Some studies have used other relatively mature SR products to correct Planet

imagery to address these problems. For example, Sentinel-2 and Landsat SR products were used

to stretch the histograms of Planet data (Jain et al., 2016; Rao et al., 2021). However, this method

is unsuitable for our study region because Sentinel-2 and Landsat data have much more cloud

coverage than Planet Basemaps in the tropics. Given that a small area has a high chance of being

repeatedly captured by the same sensor under similar cloud and shadow conditions, we split our

study region into many small areas. To smooth SR differences between tiles, we then performed a

normalization on each of them using Eq. (1), where is the normalized pixel value,𝑃
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑃

is the original pixel value, and and are the minimum and maximum pixel values,𝑃
𝑚𝑖𝑛

𝑃
𝑚𝑎𝑥

respectively. In this study, we split our study region into 469 small areas according to the Planet

Basemaps tile boundary for convenience. Note that we removed pixel values in the top and

bottom two percentiles to avoid abnormal values. The same preprocessing was applied to aerial

imagery.

𝑃
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

=
𝑃−𝑃

𝑚𝑖𝑛

𝑃
𝑚𝑎𝑥

−𝑃
𝑚𝑖𝑛

# 1( )  

2.4.2.2 Cashew plantation maps

We employed the STCA model to create cashew plantation maps for years from 2019 to

2021 using the Planet Basemaps. The STCA model can leverage the spatiotemporal information

from time-series imagery to create a high-confidence cashew plantation map. Although several

deep learning approaches that leverage spatiotemporal information for crop mapping (Ji et al.,

2018; Jia et al., 2017; Mazzia et al., 2020) have shown encouraging results in isolated scenarios

for studying a specific crop, these approaches used Convolutional Neural Networks (CNN) and
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Recurrent Neural Networks (RNN) in a straightforward manner to model spatial and temporal

information without determining how various time steps contribute to the classification

performance. Instead, we need a model that can automatically pay attention to the time steps that

contribute the most to classification performance. The STCA model uses a U-Net-like module to

automatically extract spatial features and a Bidirectional Long-Short Term Memory (BiLSTM)

module (Graves and Schmidhuber 2005) to extract phenological changes (Ghosh et al., 2021a).

To better aggregate the information for each time step, we further added the attention mechanism

to aggregate the hidden representations over the time series based on their contribution to the

classification performance (Luong et al., 2015; Jia et al., 2019). The parameter set of STCAθ

was trained to minimize the objective function of pixel-wise cross entropy on the limited number

of manually annotated labeled patches:

𝐿 𝑋, 𝑌( ) =− 1
𝑁×64×64

𝑖=1

𝑁

∑
ℎ,𝑤( )

64,64( )

∑
𝑘=1

4

∑ 𝑌
𝑖( )

ℎ,𝑤

𝑘 log 𝑙𝑜𝑔 𝑓 𝑋
𝑖
; θ( )

ℎ,𝑤

𝑘 # 2( ) 

where is the batch size, and denote the th patch in the batch and its corresponding label of𝑁 𝑋
𝑖

𝑌
𝑖

𝑖

size , and is the predicted probabilities of each class on the th patch. In thisℎ, 𝑤( ) 𝑓 𝑋
𝑖
; θ( ) 𝑘 𝑖

study, we used the kernel of 3 by 3 pixels for five convolution layers and the kernel of 2 by 2

pixels for max-pooling and transposed convolution layers in encoder and decoder.

For each year, imagery data for the seven months from November to May were fed into

STCA. Before model training, each image tile was cut into image patches of 64 by 64 pixels. To

create a more stable prediction result and quantify prediction uncertainty, Monte Carlo dropout

was used in the testing phase. For standard deep learning models, dropout is only applied during

training, which serves as a regularization to avoid overfitting. In our study, dropout was also
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applied in the testing phase. Specifically, we randomly sampled the neurons to be dropped out in

each hidden layer, resulting in a slightly different model architecture , which can be viewed as an

averaged ensemble of several different neural networks (Gal et al., 2016). During testing, the

predicted probability value for each class was obtained by taking the average of ten runs, as

demonstrated in Eq. (3):

𝑓 𝑋
𝑖( ) = 1

10
𝑟=1

10

∑ 𝑓 𝑋
𝑖
; θ

𝑟( )# 3( ) 

where denotes the th patch and are the predicted probabilities of each run on the th𝑋
𝑖

𝑖 𝑓 𝑋
𝑖
; θ

𝑟( ) 𝑟 𝑖

patch. Moreover, the standard deviation across the runs gives an estimate of the uncertainty 𝑢𝑛𝑐

in the prediction (Eq. (4)). In this study, the dropout rate is 0.3.

𝑢𝑛𝑐 𝑋
𝑖( ) = 𝑟=1

10

∑ 𝑓 𝑋
𝑖
;θ

𝑟( )−𝑓 𝑋
𝑖( )( )2

10 # 4( ) 
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Fig. 4. (a) Region growing strategy and (b) the pathway to distinguish between high-density and low-density cashew

plantations.

Next, each pixel was allocated a class using a region growing strategy. Traditionally, for deep

learning multi-classification tasks, each pixel is assigned to the class with the highest Softmax

value, and we refer to this strategy as “Argmax” prediction. However, with Argmax prediction,

misclassification between spectrally similar classes and fragmentation of fields can easily occur.

In our study, cashew plantations share similar spectral features with gallery forests and other tree

crops, e.g., for some pixels which should be gallery forests or other tree crops, the highest

Softmax value may be for cashew plantations. In this case, the Argmax prediction would wrongly

classify these pixels as cashew plantation. In addition, the space between cashew trees in

plantations may be identified as other land cover types, resulting in unrealistically fragmented

fields. Therefore, the region growing strategy was chosen to process the pixel-wise Softmax

output instead of directly taking Argmax prediction as a classification result. Specifically, step 1

in Fig. 4 shows the original Softmax output for one class, where darker blue colors represent
20



larger Softmax values. As shown in step 2, pixels having a Softmax value greater than 0.8 were

assigned as seed pixels, and those between 0.4 and 0.8 were assigned as neighboring pixels. In

step 3, neighboring pixels with a seed pixel in their neighborhood were reassigned as seed pixels.

Step 4 shows the region growing result generated by seed pixels. The neighboring pixels in case

1 would not be maintained in the end, which reduces misclassification, while the neighboring

pixels in case 2 would be maintained to ensure the integrity of plots. Since the region growing

strategy produces class-wise prediction, clashes between two or more classes at certain pixels are

bound to happen, in which case we assign the cropland/others class to those pixels.

We employed the U-Net model to create the cashew plantation map for 2015 using aerial

imagery. Each image tile was cut into image patches of 256 by 256 pixels before model training.

The U-Net model has been prevalent in the crop classification domain (M and Jayagopal 2021;

Wei et al., 2019; Zou et al., 2021) because of its advantages for segmentation tasks, including the

combined use of global location and context, fewer training samples, and good performance

(Alom et al., 2018; Ronneberger et al., 2015). The same Monte Carlo dropout method was

applied to create an average over ten predictions and express the prediction uncertainty. In this

study, we used five convolution layers with the kernel of 3 by 3 pixels. Maxpool and transposed

convolution layers were employed with the kernel of 2 by 2 pixels. The dropout rate is set to 0.3.

Then, the region growing strategy was applied to produce the final cashew plantation map for

2015.

2.4.2.3 Classification post-processing

Based on the fact that perennial cashew plantations are not cut down once planted in our

study region, the cashew plantation area identified in 2015 was used as a mask in the 2019, 2020,
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and 2021 classification maps to avoid omission errors. Similar masks were generated for 2019

and 2020 to identify cashew plantations over the years that followed. Given the fair classification

performance for the built-up land class due to limited training labels, we used the land cover

maps published in 2016 (ESA, 2017) and 2020 (ESA, 2021) by ESA to create masks for built-up

land to update the classification result.

2.4.3 Mapping cashew planting density in plantations (tree-spacing practices)

Field-collecting tree planting density data on a large scale is a difficult task requiring a

substantial commitment of time and resources, which renders supervised learning unrealistic.

Therefore, we need a learning strategy to categorize plantations into high- or low-planting density

without the need of labels. Clustering is one such widely used unsupervised learning strategy.

However, directly clustering the spectral bands of mono-temporal remote sensing imagery can

lead to suboptimal results for several reasons. First, the clustering using spectral values of a

single pixel can be noisy due to the spatial noise of the sensors. Second, clustering using all

spectral values of all the pixels in an image patch can lead to very high dimensions and thus lead

to issues like correlated attributes and inaccurate calculated distances. Third, multi-temporal

remote sensing imagery includes more information to depict cashew tree crops than

mono-temporal imagery. Thus, to address these challenges, we extracted abstract features –

embedding – from the satellite imagery time series using a spatiotemporal autoencoder and

applied the clustering method at the embedding level. Furthermore, the traditional K-means

clustering method (MacQueen et al., 1967) cannot perform well with complicated imagery

datasets (Xie et al., 2016), and it likewise fared poorly in our task. Therefore, we adopted a deep
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embedded clustering method (Xie et al., 2016) as our clustering method, which optimized the

K-means result and thus improved our clustering performance (Ghosh et al., 2021b).

In this study, the Clustering Augmented Self-supervised Temporal Classification (CASTC)

model was leveraged to distinguish two kinds of cashew plantation tree-spacing practices

(high-density versus low-density cashew plantations) using the temporal Planet Basemaps in

2021. Specifically, the encoder and decoder parts in the autoencoder structure have a similar

architecture to STCA without the skip connections. Removing skip connections can help the

model to extract quality encoded spatiotemporal vectors – embedding – that fully capture

representative features without the assistance from the skip connections. The embedding output

by the encoder is fed into an LSTM-based sequence decoder that generates a sequence of vectors,

and a convolutional decoder then reconstructs back the input time-series satellite imagery based

on the vector sequence. Model training consists of two phases: the first phase involves model

initialization, and the second phase is model refinement with optimized clustering objectives. In

the first phase, the autoencoder generated the embeddings, which were then subjected to the

K-means clustering algorithm to generate initial cluster centroids. In the second phase, the cluster

centroids obtained from the first phase were refined by matching soft assignment to target

distribution by Kullback-Leibler (KL) divergence (Joyce, 2011) minimization. The soft

assignment measures the similarity between an embedding and a cluster centroid with the

t-distribution (Van der Maaten et al., 2008) to generate the probability of assigning the

embedding to the cluster:
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Then, we matched the soft assignment to the target distribution by minimizing the KL divergence

to refine cluster centroids and encoder:
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where is the number of image patches in the training set.𝑁
𝑡

Before model training, each image tile was cut into image patches of 32 by 32 pixels. After

training the model, we had ten clusters, and the model was used to assign a cluster for each image

patch in the training set. For the image patches for each cluster, we then visually inspected the

corresponding high-resolution Airbus satellite imagery and assigned the image patches as high

density or low density (step 1 in fig. 4(b)). We applied this model to the entire study region and

kept only the cashew plantation region using a cashew plantation distribution mask. Each

separate cashew plantation was given a density score from 0 to 1 (step 2 in Fig. 4(b)) to indicate

the ratio of high-density image patches according to Eq. (4). Then, a density score threshold of
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0.5 was applied to distinguish between high-density and low-density plantations (step 3 in Fig.

4(b)).
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2.4.4 Validation of cashew plantation classification maps

Two accuracy assessment methods were performed on the cashew plantation distribution in

two dimensions: space and time. In the spatial dimension, we verified the accuracy for each year

using more than 1,100 ground truth point samples. A confusion matrix, overall accuracy (OA),

user’s accuracy (UA), producer’s accuracy (PA), and the F1 score (Eq. (9)) of cashew plantations

(F1_cashew) were used to evaluate the accuracy. In addition, ~4000 cashew plantation polygons

were used to verify the accuracy in 2021. In the time dimension, we verified the consistency of

the classification results from 2015 to 2021 using 196 cashew plantation samples located in the

same place across years. Note that built-up areas were ignored in our accuracy assessment, as this

information was derived from existing products and was not the focus of this study. To assess the

accuracy of cashew plantation tree-spacing practices, 348 points with known planting density

were used.

𝐹1 = 2*𝑃𝐴*𝑈𝐴
𝑃𝐴+𝑈𝐴 # 9( ) 

2.4.5 Benchmarking with other classification approaches

The performance of STCA was compared with three deep learning methods: 3D-CNN (Ji et

al., 2018), U-Net with ConvLSTM (Ghosh et al., 2021a; Shi et al., 2015), and CALD (Jia et al.,
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2019), all of which were designed to learn spatiotemporal information and have been shown to

perform well in crop classification tasks. We did not include traditional machine learning

methods for comparison with STCA because they do not take spatial information into account in

their classification, and the CALD approach has been shown to perform much better on cropland

mapping than RF and SVM (Jia et al., 2019). Compared to the traditional CNN network,

3D-CNN exploits additional temporal information by conducting convolution in the time

dimension to learn temporal information. U-Net with ConvLSTM utilizes the U-Net architecture

but substitutes the convolution layers with ConvLSTM layers, which can capture spatial and

temporal information with CNN and LSTM. CALD leverages a context-aware LSTM to capture

temporal information and further learn spatial information from neighboring pixels. We

compared the classification performance of these four approaches within the training region. UA

and PA were used to assess classification performance for each class.

We also compared the performance of CASTC with two other standard self-supervised

classification methods, i.e., Autoencoder with K-means (Ghosh et al., 2021b) and Colorization

with K-means (Vincenzi et al., 2021). Autoencoder is a standard spatiotemporal STCA

architecture without the skip connections. Colorization is a self-supervised learning technique

with two independent branches taking in the NIR and RGB channels. Both of the branches are

trained by the autoencoder separately, and we averaged their respective embeddings from the

final layer as final embeddings. K-means is performed on the embeddings from the final layer of

the encoder for both methods. To compare the clustering performance of the three approaches at

the embedding level, we measured the inter- and intra-cluster differences using two metrics, the

Separability Index (SI) and Coefficient of Variation (CV). SI (Somers and Asner et al., 2013) was

used to measure the inter-class difference (Eq. (10)):
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respectively. The numerator can reflect the disparity between different clusters, while the

denominator can indicate the degree of concentration within clusters (Hu et al., 2019; Yin et al.,

2020). A larger SI indicates greater dissimilarity between the embeddings in the two clusters. CV

was used to measure intra-cluster differences, and it is unitless (Eq. (11)):
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where represents a cluster, and and refer to the mean value and standard deviation of a𝑖 σ
𝑖

µ
𝑖

cluster, respectively. A smaller CV indicates a greater concentration of embeddings in the cluster.

Then, we compared the distribution of SI and CV for the three approaches.

3 Results

3.1 Results of benchmark experiments
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Fig. 5. Classification results for STCA and baselines along with ground truth labels.

The accuracy assessment results in Table 2 compare the classification performance between

STCA and the other three benchmark approaches. The classification accuracy of the STCA

method for cashew plantations is superior to the other three methods. CALD exhibited the

poorest performance because it didn’t capture enough spatial information, which results in more

errors at individual pixels. 3D-CNN and ConvLSTM demonstrated slightly better classification

abilities than CALD, although both methods are unable to identify the time steps that contribute

most. Fig. 5 provides a visual comparison of the classification results. The CALD method

classification results are too fragmented to maintain continuity of different land covers. The

ConvLSTM and 3D-CNN generate more misclassification between cashew plantations, mixed

trees/grassland, and cropland/others than STCA.
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Table 2. Accuracy assessment for STCA and benchmark methods.

CALD U-Net+ConvLSTM 3D-CNN STCA

Mixed trees/grassland

(PA)

81.6% 82.4% 83.5% 88.1%

Mixed trees/grassland

(UA)

82.3% 83.2% 81.9% 84.4%

Cashew plantation (PA) 75.1% 77.2% 78.4% 85.7%

Cashew plantation (UA) 76.3% 78.5% 77.2% 83.0%

Built-up Land (PA) 63.4% 65.5% 58.3% 70.4%

Built-up Land (UA) 50.7% 55.9% 60.7% 65.5%

cropland/others (PA) 68.3% 70.4% 74.8% 80.2%

cropland/others (UA) 72.3% 73.6% 69.6% 84.7%

Fig. 6 illustrates the classification comparison between CASTC and the two other benchmark

self-supervising approaches. In terms of SI, although CASTC has a slightly lower median value

than Colorization with K-means, the first quantile and the maximum are noticeably higher, which

indicates much greater divergence of some cluster pairs. Autoencoder with K-means has the

poorest clustering performance. In the comparison of CV, the maximum and median of CASTC

are the lowest among the three methods, although the minimum is slightly higher than

Colorization with K-means. Colorization with K-means has the greatest median and maximum

values of the three approaches, indicating that more than half of the clusters it formed were

highly dispersed. As shown in Fig. 6(b), the image patches from two clusters formed by CASTC

show obvious differences in cashew tree density. High-density clusters stand out in sharp contrast
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to low-density clusters. However, for Autoencoder and Colorization with K-means, high-density

and low-density cashew plantations are mixed in the same cluster, indicating that the two

methods perform poorly in this task.

Fig. 6. Comparison of clusters generated by CASTC and benchmark methods by (a) SI and CV and (b) visual check.

3.2 Accuracy assessment for cashew plantation distribution and plantation density

For each of the four years, the OA of the cashew plantation map exceeded 85% (Table S2-5)

with more than 1100 validation points. The cropland/others class was most frequently

misclassified with cashew plantations. A small amount of Mixed trees/grassland labels were also

found in points predicted to be cropland/others. F1_cashew was roughly 85% in 2015 and almost

90% in the following three years. The lower F1_cashew value in 2015 was expected given that no

temporal information could be used for the mono-temporal imagery. With ~4000 validation

polygons, the PA of the cashew plantation map in 2021 was over 87% (Fig. 7). In terms of
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classification consistency, 83.7% of the samples were consistently classified as cashew plantation

across the years, which demonstrated the stability of the classification along the time dimension

(Table S6). The OA for cashew plantation density mapping was 77.9% (Table S7). Low-density

cashew plantations were better categorized than high-density plantations, possibly because the

number of high-density plantation samples, 128, was smaller than that of low-density samples,

220.

Fig. 7. The distribution of cashew plantations in 2021 and accuracy assessment with ~4000 validation polygons in

pixel units. Three sample sites are shown with classification maps and satellite imagery from Google Earth.
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3.3 Spatial distribution of cashew plantations in 2021

Fig. 7 shows the distribution of cashew plantations in 2021, and Table 4 summarizes the

cashew plantation area and share of land planted with cashew trees in 2021 for each commune.

The area of cashew plantations in 2021 is ~467,000 ha. The Bantè commune has the greatest

share of land dedicated to cashew plantations, with over 300 ha of plantations per 1,000 ha land,

while two other communes (Parakou and Savè) have over 180 ha of cashew plantations per 1,000

ha land. Both the Djougou and Bassila communes have less than 70 ha cashew plantations per

1,000 ha land. The Tchaourou and Bantè communes had the greatest total cashew plantation area,

with 94,100 ha and 80,000 ha, respectively, and together account for over one third of total

cashew plantation area in Benin. Additionally, we found that cashew plantations have encroached

on 38,900 ha of protected areas, using boundaries in Benin within the World Database of

Protected Areas (WDPA). 70% more protected area has been encroached upon by cashew

plantations in 2021 than in 2015 (22,800 ha). The online version of the cashew plantation map is

available on TechnoServe Lab (https://cajuboard.tnslabs.org).

Table 4. Total cashew area and share of land planted with cashew trees for each commune.

Communes

Cashew area

(1000 ha)

Share of land planted with cashew trees

(ha/1000 ha)

N'Dali 31.2 80

Parakou 8.5 181
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Tchaourou 94.1 129

Bantè 80.0 303

Dassa-Zoumè 19.2 109

Glazoué 20.9 119

Ouèssè 36.7 119

Savalou 38.5 144

Savè 49.8 214

Bassila 34.1 65

Djougou 24.6 59

Djidja 29.4 139

3.4 Cashew plantation expansion from 2015 to 2021

The classification results for the four years indicate that the area of cashew plantations

expanded from ~259,000 ha to ~467,000 ha from 2015 to 2021, an increase of ~80%. This

confirms public statistics from the Benin Ministry of Agriculture, Livestock and Fisheries, which

show that cashew production doubled from 2016 to 2020, and that the area under cultivation

increased by 71% from 286,000 ha in 2016 to 488,000 in 2020 (MAEP-Benin, 2020). During the

last seven years, there were clear signs of growth in west and east Collines, west Donga, and

south Zou, as shown in Fig. S2. Fig. 8(a) quantitatively shows the composition of the original

land cover type from which the new cashew plantations were established. The departmental

statistics show that the cashew plantation area increased in all four departments over the past

seven years with the highest growth in Collines (103,200 ha) and the lowest growth in Zou
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(15,500 ha). From 2015 to 2021, the cropland/others class accounted for more cashew expansion

than the mixed trees/grassland class for all four departments. Only in two instances - in Borgou

and Donga between 2015 and 2019 - did conversion to cashew plantations from mixed

trees/grassland exceed 50%. The highest conversion from mixed trees/grassland to cashew

plantations occurred in Borgou from 2015 to 2019 with 62.7% conversion, while the lowest

occurred in Zou from 2020 to 2021, with 26.9% conversion.

The statistics of the same metrics are provided for each commune in Fig. 8(b). All 12

communes had continuous cashew expansion over the last seven years. The highest cashew

plantation area growth occurred in Savè (36,900 ha), while the lowest growth occurred in

Parakou (2,000 ha), likely because the area of Parakou is smallest among the 12 communes and

space for establishing new cashew plantations is very limited. The relative conversion of mixed

trees/grassland and cropland/others to cashew plantations varies greatly from region to region. In

five communes (Bassilla, N’Dali, Tchaourou, Bantè, and Savalou) between 2015 and 2019, more

mixed trees/grassland than cropland/others were converted to cashew. Three such cases

(Djougou, Savalou, and Dassa-Zoumè) occurred between 2019 and 2020, and only one (Parakou)

occurred between 2020 and 2021. For other periods and communes, the cropland/others class

accounted for more cashew expansion than mixed trees/grassland. The greatest conversion from

mixed trees/grassland to cashew plantations occurred in Savalou between 2015 to 2019 at 70%,

while the lowest conversion occurred in Dassa-Zoumè between 2020 to 2021 at 13.6%.
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Fig. 8. The source of cashew plantation area growth at (a) the department level and (b) the commune level. Note that

the change between 2015 and 2019 represents a larger time increment on the x-axis than between individual years.

3.5 Planting density map of cashew plantations for 2021

The map of cashew plantation planting density scores is shown in Fig. 9(a). A threshold

planting density score of 0.5 was selected to distinguish high-density and low-density cashew

plantations (Fig. 9(b)), and details are shown for three sample sites in Fig. 9(c). As shown in Fig.
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9(d), the proportion of high-density cashew plantations relative to the total reveals that 5

communes exceed 50%, namely N'Dali, Parakou, Bantè, Ouèssè, and Savalou. In the Tchaourou

commune, nearly half of the area planted with cashew trees already consists of high-density

cashew plantations. These six communes are all located in the Borgou and Collines departments,

which means these two departments, especially Borgou, have a relatively mature cashew

cultivation industry. On the other hand, although the three communes of Savè, Bassila, and

Djougou have relatively large cashew plantation areas, the tree density is low, which presents an

opportunity to increase cashew planting density (and therefore cashew production) on existing

plantations.
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Fig. 9. (a) A map of cashew plantation planting density scores in 2021. (b) A map of high- and low-density cashew

plantations in 2021 with a threshold of 0.5. (c) Three sample regions with high- and low-density cashew plantations.

The high-resolution satellite imagery is from Esri World Imagery. (d) The percentage and area of high- and

low-density cashew plantations for all communes.

4 Discussion

4.1 The added value of Planet Basemaps in large-scale smallholder crop mapping

Although some previous studies have focused on smallholder crop mapping, the limited

spatial and temporal resolution of the available remote sensing data was not adequate for creating

field-level maps. Prior to the Sentinel mission launch, Landsat and MODIS data were used to

map smallholder farms (Jain et al., 2013; Schneibel et al., 2017). Later, Sentinel-1 and 2 were

widely used for crop functional mapping of all kinds, especially in Africa (Jin et al., 2019;

Lambert et al., 2018; Masiza et al., 2020). However, the highly fragmented fields and frequent

cloud coverage in some regions can cause satellite imagery with medium spatial/temporal

resolution to lose its efficiency. Sentinel-2 imagery cannot adequately depict smallholder cashew

plantation field boundaries, given its insufficient spatial and temporal resolution and the

degradation of image quality by clouds and shadows (Fig. S3(a)). Recently, researchers have

realized the advantages of the high spatial and temporal resolution in Planet’s microsatellite

constellation for crop mapping. Some promising smallholder crop mapping results using Planet

Daily Scenes SR data (3 m) have been published, although they consist solely of small-scale

(<1000 km2) applications (Rafif et al., 2021; Rao et al., 2021). However, such daily images are

still affected by clouds and shadows to varying degrees (Fig. S3(b)). In comparison, Planet

Basemaps generally contain less noise (Fig. S3(c)). This is because the monthly Planet Basemaps
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go through more post-processing steps than Planet Daily Scenes. First, the cloud cover and image

sharpness are used as quality metrics to determine the best imagery in each month, and the

imagery that ranks highest in the weighting of these metrics is selected. Then, the selected

imagery is normalized to a monthly MODIS SR target to minimize variability between scenes

and reduce atmospheric effects. Finally, all images processed for Planet Basemaps are manually

inspected for quality (Planet, 2022b). To summarize, Planet Basemaps enable field-specific, and

even sub-field, crop monitoring.

We compared the classification performance for Sentinel-2, Planet Daily Scenes, and Planet

Basemaps in the training region (Fig. 10). The classification result generated by Sentinel-2 was

only able to identify a small subset of cashew plantations. Planet Daily Scenes were able to

capture more cashew plantations than Sentinel-2, although some pixels were misclassified as

cashew plantations. By comparison, Planet Basemaps classified cashew plantations more

accurately. The classification accuracy assessment using F1 scores also showed that Planet

Basemaps produced superior classification results compared to the other two methods (Table 5).
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Fig 10. A detailed comparison of classification using Sentinel-2 imagery, Planet Daily Scenes, and Planet Basemaps,

shown along with Airbus satellite imagery and ground truth labels.

Table 5. Accuracy assessment for Sentinel-2 imagery, Planet Daily Scenes, and Planet Basemaps using F1 scores.

Class Sentinel-2 Planet Daily Scenes Planet Basemaps

Mixed trees/grassland 0.7471 0.8535 0.9103

Cashew plantation 0.6723 0.7941 0.841

cropland/others 0.6837 0.7529 0.783

4.2 Uncertainty analysis of classification results

39



Because the study region is located in the tropics, clouds and shadow weaken the

observational capability of optical sensors. At the same time, the Planet microsatellite

constellation consists of many satellites, which inevitably causes differences in sensor

characteristics, thus affecting the ability to obtain consistent SR for a large region to some extent.

Additionally, other factors such as satellite product versions, atmospheric and directional

corrections, and BRDF effects can also cause classification uncertainty (Zeng et al., 2022). All of

these factors not only have impacts on the direct monitoring ability for cashew plantations, but

also introduce inter-class similarity and intra-class differences, resulting in poor classification

performance. In order to explore the impacts of these factors on the classification results, we

employed an uncertainty mask generated by the Monte Carlo dropout technique (Eq. (4)) to filter

out the pixels impaired by these factors. Fig. 11(a) shows the real surface conditions with satellite

imagery. The pixel-wise classification uncertainty mask from ten runs with Monte Carlo dropout

(Fig. 11(c)) was applied to the averaged classification results of the ten runs (Fig, 11(b)) with a

threshold of 0.06 to generate a cashew plantation map without high-uncertainty pixels (Fig.

11(d)). The threshold can be adjusted case by case.

We took the classification result in 2021 as an example and divided the study region into

three parts based on the degree of cashew plantation area decline (Fig. 12 (e)) after applying the

uncertainty mask. Communes are relatively spatially concentrated for each class. There are four

communes in the southeast of the study region that experienced less decline than other communes

(i.e., Djidja, Dassa-Zoumè, Savè, and Glazoué) among which Savè declined the least. On the

other hand, the three northwestern communes of Djougou, Bassila, and Bantè declined more than

other communes, among which Bassila declined the most.
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Fig. 11.The process to generate a cashew plantation map without high-uncertainty pixels. (a) Airbus/Maxar satellite

imagery with 0.5-m resolution. (b) Classification map. (c) Uncertainty map. (d) The classification map masked by

the uncertainty map with a threshold equal to 0.06. (e) Cashew area changes compared with the original

classification map for each community after applying the uncertainty mask for 2021.

4.3 Policy implications for the cashew industry in Benin

The findings of this study help document the progress of a major governmental initiative

known as the Strategic Plan for the Development of the Agricultural Sector (PSDSA). A key goal

under this plan was to double cashew production from 112,000 metric tons to 200,000 metric tons

from 2016 to 2021 (MAEP-Benin, 2017). The results produced here provide additional inputs to

inform the PSDSA for 2022-2025 (PNIASAN-Benin, 2022).
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First, we tracked the increase in cashew areas under cultivation from 2015 to 2021. Our

modeling shows that Benin increased cashew plantations from ~259,000 ha in 2015 to ~467,000

ha in 2021, which is very close to the government estimate of ~286,000 ha under cultivation as of

2016 and ~488,000 ha as of 2020 (MAEP-Benin, 2020). At the department level, Zou had the

highest average annual percentage increase (37.3%) and Borgou had the lowest (18.9%). At the

commune level, Djougou had the highest average annual percentage increase, while Bantè

increased by the lowest amount. ~120,000 ha of new cashew plantations came from lands that

were previously under crop production or left fallow, and ~80,000 ha of mixed trees/grassland

have been converted to cashew plantation between 2015 and 2021. According to the boundary of

WDPA, the area of cashew plantations within protected areas grew from 22,800 ha to 38,900 ha

between 2015 and 2021, an increase of 70%.

We further explored the overall planting density of cashew plantations based on the 2021

classification map. To increase cashew nut yield, it is important to implement good agricultural

practices and to increase tree-planting density in areas we have classified as low-density. Our

result shows that for the communes N'Dali, Parakou, Bantè, Ouèssè, and Savalou, more than 50%

percent of the cashew plantation area is high-density. However, for the communes Djougou,

Bassila, Glazoué, Savè and Dassa-Zoumè, most cashew plantations are low-density. In our study

region, over 90% of new cashew plantations established between 2015 and 2021 were

low-density. Increased application of inputs (seedlings) in low-density cashew plantations

coupled with targeted training efforts in all cashew growing areas that have not yet received

training could have a significant impact on cashew nut yields.

4.4 Limitations and future work
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The combination of tree crop classification algorithms for cashew and high-resolution

imagery demonstrated the power of accurately mapping the distribution and planting density of

cashew plantations, upon which we monitored the dynamics of cashew areas under cultivation

from 2015 to 2021. The proposed classification algorithms will allow rapid mapping of cashew

plantations going forward. However, some limitations remain to be optimized in the future. First,

because of year-round clouds and shadows in the tropics and differences in sensor characteristics

of the satellite constellation, intra-class spectral inconsistency is still an issue for some regions,

even after Planet Basemaps have been normalized to a monthly MODIS SR product. This is

common in the remote sensing field, and solutions are limited. A potential method is using

domain adaptation, including invariant feature selection, representation matching, adaptation of

classifiers, and selective sampling (Elshamli et al., 2017; Martini et al., 2021; Tuia et al., 2016).

Recently, the new generation of PlanetScope instruments with 4 newly added bands (coastal blue,

yellow, a second green, and red edge spectral bands) has launched and started publishing imagery

(Planet, 2022c). The new analytic product is calibrated to Sentinel-2 and has improved alignment,

enabling accurate time-series analysis and machine learning models (Planet, 2022d). In future

classification map updates, we will consider these new methods and inputs. Second, although the

2.4-m Planet Basemaps were leveraged to distinguish high- and low-density cashew plantations

using the threshold value of 100 trees/ha, remote sensing imagery with higher spatial resolution

can help differentiate additional levels of planting density (e.g., “very-high-density” plantations

above 180 trees/ha) as a result of finer observational ability. In addition, more information about

GAP adoption in cashew plantations can be captured, such as whether trees are pruned (i.e., tree

crowns are not touching each other), which is important for improving cashew tree yields. In the

future, more agricultural practices will be mapped.
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With the cashew plantation distribution and planting density maps produced here, we can

further understand yield dynamics and the benefits of expanding cashew plantations for carbon

sequestration. With further work and close coordination between researchers and field teams, we

will geographically expand the modeling techniques in this study to other cashew growing

regions, and then to other major smallholder tree crops such as mango, avocado, shea, and

macadamia, helping to improve the livelihoods of millions of smallholder farmers globally.

5 Conclusion

In this study, we mapped the spatial distribution of cashew plantations from 2015 to 2021

and cashew planting density in 2021 with our developed tree crop mapping algorithms.

Combining high-resolution Planet Basemaps and aerial imagery, even with limited ground truth

labels, the STCA and U-Net showed promising performance in mapping cashew plantation

locations in each of the four years. The methods and data sources used allowed us to achieve this

result even in the face of difficult challenges that included heterogeneous landscapes and

irregularly-planted smallholder farms, similar spectral signatures between cashew and other trees,

pervasive and year-round clouds and shadows, and frequent land-use changes. We found that

cashew plantation areas in Benin expanded nearly 80% since 2015 to ~467,000 ha in 2021. With

the self-supervised learning model CASTC, the cashew plantation planting density map provided

important information to assist in identifying regions with the greatest need for guidance on

tree-spacing practices. Although the tree crop classification algorithms in this study were

designed for mapping cashew plantations in Benin, they can be adapted in the future for other

cashew growing regions and to map the distribution and planting density of other smallholder

tree crops.
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